1、由于点P(1,√3)是函数fx=Asin(ωx+φ)(A>0,w>0,|φ|<π)的图像的一个最高点,故A=√3,又f(9-x)=f(9+x),知,函数关于x=9对称
又fx的图像在区间(1,9)内与X轴有唯一一个交点,
满足:π/ω=9-1=8,得ω=π/8
又ω+φ=π/2,得φ=3π/8
从而函数的解析式为f(x)=√3sin(xπ/8+3π/8)
2)函数的对称中心为函数值为0的位置,即xπ/8+3π/8=kπ
得x=8k-3,即对称重心为(8k-3,0),其中k为整数
对称轴满足xπ/8+3π/8=π/2+kπ,即x=8k+1,其中k为整数
函数的单调增区间满足
-π/2+2kπ≪xπ/8+3π/8≪π/2+2kπ,
即16k-7≪x≪16k+1
同理,单调减区间为16k+1≪x≪16k+9,其中,k为整数
3、函数的最大值为√3,
满足xπ/8+3π/8=π/2+2kπ,即x=16k+1,
函数的最小值为-√3,
满足xπ/8+3π/8=-π/2+2kπ,即x=16k-7,其中k为整数