过A作AD⊥BC于D,
∵AB=AC,
∴BD=CD,
设BD=CD=3X(X>0),
则AB=2/3BC=4X,
∴AD=√(AB^2-BD^2)=√7X,
∴sinB=AD/AB=√7/4,
cosB=BD/AB=3/4,
tanB=AD/BD=√7/3,
cotB=BD/AD=3√7/7.
过A作AD⊥BC于D,
∵AB=AC,
∴BD=CD,
设BD=CD=3X(X>0),
则AB=2/3BC=4X,
∴AD=√(AB^2-BD^2)=√7X,
∴sinB=AD/AB=√7/4,
cosB=BD/AB=3/4,
tanB=AD/BD=√7/3,
cotB=BD/AD=3√7/7.