(2006•重庆二模)已知f(x)是定义在R的奇函数,当x<0时,f(x)=([1/2])x,那么f-1(0)+f-1(

1个回答

  • 解题思路:根据反函数的定义,要求f-1(0)的值,即求方程f(x)=0的解,由已知函数f(x)是定义在R上的奇函数,易得f(0)=0,

    同理f-1(-8)即求方程f(x)=-8的解,解方程即可,故本题得解.

    ∵函数f(x)是定义在R上的奇函数,

    ∴f(0)=0,f(-x)=-f(x)

    又当x<0时,f(x)=([1/2])x,则f(-3)=8

    ∴f(3)=-8

    依据反函数的定义可知

    ∴f-1(0)=0,f-1(-8)=3

    故答案为 B.

    点评:

    本题考点: 函数奇偶性的性质.

    考点点评: 本题主要考查函数的奇偶性,反函数等基础知识,是高考考查的重要内容,注意奇函数的性质f(0)=0的灵活运用,可以使题目得到快速解决.