sinA+sinB=√3(cosB-cosA),两边和差化积:
2[sin(A+B)/2cos(A-B)/2]=-2√3[sin(A+B)/2sin(A-B)/2]
cos(A-B)/2=-√3sin(A-B)/2
tan[(A-B)/2]=-√3/3,∵A,B,∈(0,π/2),-π/2
sinA+sinB=√3(cosB-cosA),两边和差化积:
2[sin(A+B)/2cos(A-B)/2]=-2√3[sin(A+B)/2sin(A-B)/2]
cos(A-B)/2=-√3sin(A-B)/2
tan[(A-B)/2]=-√3/3,∵A,B,∈(0,π/2),-π/2