(1)∵x2-4x-12=0,
∴x1=-2,x2=6.
∴A(-2,0),B(6,0),
又∵抛物线过点A、Bm、C,故设抛物线的解析式为y=a(x+2)(x-6),
将点C的坐标代入,求得 a=13,
∴抛物线的解析式为 y=13x2-43x-4;
(2)设点M的坐标为(,0),过点N△MN∥△ABC
作NH⊥x轴于点H(如图(1)).
∵点A的坐标为(-2,0),点B的坐标为(6,0),
∴AB=8,AM=m+2,
∵MN∥BC,∴△MNA∽△ABC.
∴ NHCO=AMAB,
∴ NH4=m+28,
∴ NH=m+22,
∴ S△CMN=S△ACM-S△AMN=12•AM•CO-12AM•NH,
= 12(m+2)(4-m+22)=-14m2+m+3,
= -14(m-2)2+4.
∴当m=2时,S△CMN有最大值4.
此时,点M的坐标为(2,0);