1/(x²+3)的反导数即求1/(x²+3)的不定积分
∫[1/(x²+3)]dx,x=√3tanu,dx=√3sec²udu
=√3∫{(sec²u)/[(√3tanu)²+3]}du
=√3∫[(sec²u)/(3tan²u+3)]du
=(√3/3)∫(sec²u/sec²u)du
=(1/√3)∫du
=(1/√3)u+C,∵x=√3tanu∴u=arctan(x/√3)
=(1/√3)arctan(x/√3)+C
1/(x²+3)的反导数即求1/(x²+3)的不定积分
∫[1/(x²+3)]dx,x=√3tanu,dx=√3sec²udu
=√3∫{(sec²u)/[(√3tanu)²+3]}du
=√3∫[(sec²u)/(3tan²u+3)]du
=(√3/3)∫(sec²u/sec²u)du
=(1/√3)∫du
=(1/√3)u+C,∵x=√3tanu∴u=arctan(x/√3)
=(1/√3)arctan(x/√3)+C