f(x)= Acos^2(ωx+φ)+1 = (A/2) cos(2ωx+2φ) + A/2 + 1 的最大值为3
=> A+1 = 3 => A=2
x=0, y = cos(2φ) + 2 = 2 => cos(2φ) =0
其相邻两条对称轴之间的距离为 2 => ω = π/2
=> f(x) = cos(πx+2φ) + ...
f(x)= Acos^2(ωx+φ)+1 = (A/2) cos(2ωx+2φ) + A/2 + 1 的最大值为3
=> A+1 = 3 => A=2
x=0, y = cos(2φ) + 2 = 2 => cos(2φ) =0
其相邻两条对称轴之间的距离为 2 => ω = π/2
=> f(x) = cos(πx+2φ) + ...