F(-x)=[1+2/(2^-x-1)]f(-x)=F(x)=[1+2/(2^x-1)]*f(x)
1+2/(2^-x-1)上下乘2^x,且2^-x*2^x=2^0=1
所以1+2/(2^-x-1)=1+2*2^x/(1-2^x)
=(1-2^x+2*2^x)/(1-2^x)
=(2^x+1)/(1-2^x)
1+2/(2^x-1)
=(2^x-1+2)/(2^x-1)
=(2^x+1)/(2^x-1)
=-(2^x+1)/(1-2^x)
所以f(-x)=-f(x)
所以是奇函数
F(-x)=[1+2/(2^-x-1)]f(-x)=F(x)=[1+2/(2^x-1)]*f(x)
1+2/(2^-x-1)上下乘2^x,且2^-x*2^x=2^0=1
所以1+2/(2^-x-1)=1+2*2^x/(1-2^x)
=(1-2^x+2*2^x)/(1-2^x)
=(2^x+1)/(1-2^x)
1+2/(2^x-1)
=(2^x-1+2)/(2^x-1)
=(2^x+1)/(2^x-1)
=-(2^x+1)/(1-2^x)
所以f(-x)=-f(x)
所以是奇函数