定积分∫lnsin2xdx怎么求,积分上限是π/4,下限是0..

1个回答

  • ∫lnsin2xdx(0~π/4) (表示从0到π/4的定积分)

    =∫ln(2sinx cosx)dx(0~π/4)

    =π/4*ln2+∫lnsinxdx(0~π/4)+∫lncosxdx(0~π/4)

    =π/4*ln2+∫lnsinxdx(0~π/4)+∫lnsinxdx(π/4~π/2) (对最后一个积分换元)

    =π/4*ln2+∫lnsinxdx(0~π/2)

    =π/4*ln2+2∫lnsin2xdx(0~π/4) (换元)

    由第一个式子与最后一个式子相等即得

    ∫lnsin2xdx(0~π/4)=-π/4*ln2