x^2/a^2+y^2/b^2=1
x^2/(4c^2)+y^2/(3c^2)=1
把(1,3/2)代入,得
c=1
椭圆方程是x^2/4+y^2/3=1
过点G(1/8,0),中点H.
联立L,与椭圆方程
3x^2+4y^2=12
y=kx+m
消去,y得
(4k^2+3)x^2+8kmx+4m^2-12=0
x1+x2=-8km/(4k^2+3)
H(-4km/(4k^2+3),3m/(4k^2+3))
HG的斜率是-1/k
所以,[-4km/(4k^2+3)-1/8]/[3m/(4k^2+3)]=-1/k
m=k(4k^2+3)/[8(3-4k^2)]
∆=64k^2m^2-4(4k^2+3)(4m^2-12)>0
即 4k^2-m^2+3>0 3-4k^2≠0
340k^4-513k^2+192>0
0