不定积分,被积函数f(x)和dx ,如果 f(x)变成 f(2x),dx也要变成d(2x),这2个x为什么要相等才能算?

1个回答

  • 1、这就是在微积分时强调的对应,强调的corresponding,就是自变量的完全等同;

    2、如果积分的被积函数sin2x,它的自变量虽然是x,但是正弦函数的整体变量却是2x,

    如果我们积分时,被积函数是sin2x,但是d后面只是x,也就是说自变量的取值与被

    积函数的取值,并不在同一位置上.∫f(x)dx,这里f(x)是在x位置处的函数的值,也就

    是图形上的高,x位置处有一矩形,底宽为dx,∫ 的含义就是将所有的这些矩形面积求和.

    如果 ∫f(2x)dx,它的意思就变成,在x处的底宽是dx,可是矩形的高,却取到了2x处的高,

    这样就失去了积分的基本意义了.

    3、整体来说,矩形高是f(2x),矩形的底宽也必须是d(2x),也就是函数 f 必须在2x处取值,

    此时的2x,理解为原来的横坐标进行了均匀的压缩.

    在用“凑方法”积分时,楼主所说的问题,是初学者最常犯的错误.