关于x的方程sinx+根号3cosx+a=0化简

1个回答

  • sinx+√3cosx)+a

    =2(1/2sinx+ √3/2 cosx)+a (利用公式sin(π/6)=1/2;cos (π/6)= √3/2)

    =2(sin(π/6)sinx+cos (π/6)cosx)+a

    =2cos(x-π/6)+a (利用公式cos(α-β)=cosα·cosβ+sinα·sinβ )

    sinx+√3cosx)+a

    =2(1/2sinx+ √3/2 cosx)+a (利用公式sin(π/3)=√3/2;cos (π/3)= 1/2)

    =2(cos(π/3)sinx+sin (π/3)cosx)+a

    =2sin(x+π/3)+a (利用公式sin(α±β)=sinα·cosβ±cosα·sinβ )

    ∵sinx+√3cosx)+a=0

    ∴2cos(x-π/6)+a =0

    cos(x-π/6)=-a/2

    sin(x+π/3)=-a/2