sinx+√3cosx)+a
=2(1/2sinx+ √3/2 cosx)+a (利用公式sin(π/6)=1/2;cos (π/6)= √3/2)
=2(sin(π/6)sinx+cos (π/6)cosx)+a
=2cos(x-π/6)+a (利用公式cos(α-β)=cosα·cosβ+sinα·sinβ )
sinx+√3cosx)+a
=2(1/2sinx+ √3/2 cosx)+a (利用公式sin(π/3)=√3/2;cos (π/3)= 1/2)
=2(cos(π/3)sinx+sin (π/3)cosx)+a
=2sin(x+π/3)+a (利用公式sin(α±β)=sinα·cosβ±cosα·sinβ )
∵sinx+√3cosx)+a=0
∴2cos(x-π/6)+a =0
cos(x-π/6)=-a/2
sin(x+π/3)=-a/2