解题思路:(1)把A、B、O的坐标代入得到方程组,求出方程组的解即可;
(2)根据对称轴求出O、B关于对称轴对称,根据勾股定理求出AB即可;
(3)①若OB∥AP,根据点A与点P关于直线x=1对称,由A(-2,-4),得出P的坐标;②若OA∥BP,设直线OA的表达式为y=kx,设直线BP的表达式为y=2x+m,由B(2,0)求出直线BP的表达式为y=2x-4,得到方程组,求出方程组的解即可;③若AB∥OP,设直线AB的表达式为y=kx+m,求出直线AB,得到方程组求出方程组的解即可;
(1)由OB=2,可知B(2,0),
将A(-2,-4),B(2,0),O(0,0)三点坐标代入抛物线y=ax2+bx+c,
得
-4=4a-2b+c
0=4a+2b+c
0=c
解得:a=-
1
2,b=1,c=0
∴抛物线的函数表达式为y=-
1
2x2+x.
答:抛物线的函数表达式为y=-
1
2x2+x.
(2)由y=-
1
2x2+x=-
1
2(x-1)2+
1
2,
可得,抛物线的对称轴为直线x=1,
且对称轴x=1是线段OB的垂直平分线,
连接AB交直线x=1于点M,M点即为所求.
∴MO=MB,则MO+MA=MA+MB=AB
作AC⊥x轴,垂足为C,则AC=4,BC=4,∴AB=4
2
∴MO+MA的最小值为4
2.
答:MO+MA的最小值为4
2.
(3)①若OB∥AP,此时点A与点P关于直线x=1对称,
由A(-2,-4),得P(4,-4),则得梯形OAPB.
②若OA∥BP,
设直线OA的表达式为y=kx,由A(-2,-4)得,y=2x.
设直线BP的表达式为y=2x+m,由B(2,0)得,0=4+m,即m=-4,
∴直线BP的表达式为y=2x-4
由
y=2x-4
y=-
1
2x
点评:
本题考点: 二次函数综合题;解二元一次方程;解二元一次方程组;待定系数法求一次函数解析式;二次函数的性质;梯形.
考点点评: 本题主要考查对梯形,解二元二次方程组,解一元二次方程,二次函数的性质,用待定系数法求一次函数的解析式等知识点的理解和掌握,综合运用性质进行计算是解此题的关键.