显然x,y一奇一偶才可以满足方程,根据对称性不妨设x是偶数,y是奇数
则x=2s,y=2t+1
从而方程可以写为
(2s)²+(2t+1)²=1983
从而有4
4 s²+4 t² +4t=1982
而1982不是4的倍数,故不可能存在这样的s和t满足上式,也就不存在x,y满足
x²+y²=1983
显然x,y一奇一偶才可以满足方程,根据对称性不妨设x是偶数,y是奇数
则x=2s,y=2t+1
从而方程可以写为
(2s)²+(2t+1)²=1983
从而有4
4 s²+4 t² +4t=1982
而1982不是4的倍数,故不可能存在这样的s和t满足上式,也就不存在x,y满足
x²+y²=1983