由余弦定理有
a²+b² = 4a²+b²+a²+4b² - 2√(4a²+b²)√(a²+4b²)cosA
解得 A = arccos(2a²+2b²)/√(4a²+b²)√(a²+4b²)
同理可解得
B = arccos(2b²-a²)/√(a²+b²)√(a²+4b²)
C = arccos(2a²-b²)/√(a²+b²)√(4a²+b²)
(边无法确定,因为可以按比例放大缩小)
x-116=a^2
x+100=b^2
a^2+116=b^2-100
b^2-a^2=216=6^3
(b-a)(b+a)=216
为了b+a最大,b-a要最小
=1时,无整数解
=2时,可以,a=53,b=55
b+a=108=ymax
A=n2+15n+26=(n+2)(n+13)
设n+2=p^2
n+13=q^2
q^2-p^2=11
q+p=11
q-p=1
q=6,p=5
n=23
m-n为质数推得m,n互质
即m,n没有公共因子.
那么m所分解出来的质因子的幂次必然都是偶数.
因为如果m存在奇数次幂的质因子,除非n也有奇数个这样的质因子,mn 才有可能是完全平方数,而这样势必导致m,n有公共因子.
即m也是完全平方数.又因为mn是完全平方数,所以n也是完全平方数.
可设m=a^2,n=b^2
则m-n=(a+b)(a-b).要m-n为质数,则a-b=1.
所以若设m=a^2,则m-n=2a-1.
1000