原式=sin²(180°-60°) + 0 + tan(180°-45°) - cos²[-(360°-30°)] - sin240°
=sin²60° + 0 - tan45° - cos²(-30°) - sin(270°-30°)
=(√3/2)² + 0 - 1 - (√3/2)² + cos30°
=3/4 - 1 - 3/4 + √3/2
=√3/2 - 1
原式=sin²(180°-60°) + 0 + tan(180°-45°) - cos²[-(360°-30°)] - sin240°
=sin²60° + 0 - tan45° - cos²(-30°) - sin(270°-30°)
=(√3/2)² + 0 - 1 - (√3/2)² + cos30°
=3/4 - 1 - 3/4 + √3/2
=√3/2 - 1