在△ABC中,a、b、c分别是角A、B、C所对的边,且2sin^2[(A+B)/2]+cos2C=1

2个回答

  • ∵2{sin[(A+B)/2]}^2+cos2C=1, ∴2[cos(C/2)]^2+2(cosC)^2-1=1,

    ∴1+cosC+2(cosC)^2-1=1, ∴2(cosC)^2+cosC-1=0,

    ∴(2cosC-1)(cosC+1)=0.

    显然,在△ABC中,cosC>-1, ∴cosC+1>0, ∴只有cosC=1/2, ∴sinC=√3/2.

    又a^2=b^2+(1/2)c^2,结合正弦定理,容易得到:

    (sinA)^2=(sinB)^2+(1/2)(sinC)^2=(sinB)^2+(1/2)(√3/2)^2,

    ∴-2(sinA)^2=-2(sinB)^2-3/4, ∴1-2(sinA)^2=1-2(sinB)^2-3/4,

    ∴cos2A=cos2B-3/4, ∴cos2A-cos2B=-3/4,

    ∴2sin(A+B)sin(B-A)=-3/4, ∴sinCsin(A-B)=3/8,

    ∴(√3/2)sin(A-B)=3/8, ∴sin(A-B)=√3/4.