由正弦定理,得:
a=2RsinA、b=2RsinB,则:
a(cosC+√3sinC)=b
2RsinA(cosC+√3sinC)=2RsinB
sinAcosC+√3sinAsinC=sinB=sin(A+C)=sinAcosC+cosAsinC
则:
√3sinAsinC=cosAsinC
因为:sinC≠0,则:
√3sinA=cosA
tanA=sinA/cosA=√3/3
因:0°
由正弦定理,得:
a=2RsinA、b=2RsinB,则:
a(cosC+√3sinC)=b
2RsinA(cosC+√3sinC)=2RsinB
sinAcosC+√3sinAsinC=sinB=sin(A+C)=sinAcosC+cosAsinC
则:
√3sinAsinC=cosAsinC
因为:sinC≠0,则:
√3sinA=cosA
tanA=sinA/cosA=√3/3
因:0°