f(x)=√3sinxcosx+cos?x
=√3/2sin2x+(cos2x+1)/2
=√3/2sin2x+1/2cos2x+1/2
=sin(2x+π/6)+1/2
f(x)的最小正周期为2π/2=π
∵x∈R
∴由三角函数有界性可知,
恒有:-1≤sin[2x-(π/6)]≤1
∴-2≤sin[2x-(π/6)]-1≤0
即恒有:-2≤f(x)≤0
∴最小值f(x)min=-2
f(x)=√3sinxcosx+cos?x
=√3/2sin2x+(cos2x+1)/2
=√3/2sin2x+1/2cos2x+1/2
=sin(2x+π/6)+1/2
f(x)的最小正周期为2π/2=π
∵x∈R
∴由三角函数有界性可知,
恒有:-1≤sin[2x-(π/6)]≤1
∴-2≤sin[2x-(π/6)]-1≤0
即恒有:-2≤f(x)≤0
∴最小值f(x)min=-2