∫(arctan√x)/[√x(1+x)] dx
=∫(arctan√x)/(1+x) d(2√x)
=2∫(arctan√x)/[1+(√x)²] d(√x)
=2∫arctan√x d(arctan√x),where ∫dx/(1+x²)=arctanx+C
=2*(1/2)(arctan√x)²+C
=(arctan√x)²+C
∫(arctan√x)/[√x(1+x)] dx
=∫(arctan√x)/(1+x) d(2√x)
=2∫(arctan√x)/[1+(√x)²] d(√x)
=2∫arctan√x d(arctan√x),where ∫dx/(1+x²)=arctanx+C
=2*(1/2)(arctan√x)²+C
=(arctan√x)²+C