(1)原式=a 2sin(-4×360°+90°)+b 2tan(360°+45°)-(a-b) 2tan(2×360°+45°)-2abcos(-3×360°)=a 2sin 90°+b 2tan 45°-(a-b) 2tan 45°-2abcos 0°=a 2+b 2-(a-b) 2-2ab=0;
(2)原式=sin(-2π+
π
6 )+cos
12
5 π•tan0=sin
π
6 =
1
2 .
(1)原式=a 2sin(-4×360°+90°)+b 2tan(360°+45°)-(a-b) 2tan(2×360°+45°)-2abcos(-3×360°)=a 2sin 90°+b 2tan 45°-(a-b) 2tan 45°-2abcos 0°=a 2+b 2-(a-b) 2-2ab=0;
(2)原式=sin(-2π+
π
6 )+cos
12
5 π•tan0=sin
π
6 =
1
2 .