∵sinA^2+sinC^2=sinB^2+sinAsinC
根据正弦定理:
a^2+c^2=b^2+ac
a^2+c^2-b^2=ac
cosC=(a^2+c^2-b^2)/2ac=1/2
∵C∈(0,π)∴C=2π/3
∵2a=(1+√3)b (这里按题理应该有b)
∴2sinA=(1+√3)sinB
2sin(2π/3-B)=(1+√3)sinB
√3cosB+sinB=(1+√3)sinB
sinB=cosB
tanB=1,∴B=π/4
A=2π/3-π/4=5π/12
∴A=5π/12,B=π/4,C=π/3