作BM⊥AC于M,交DE于N,
由DE‖AC,AD:DB=2:1,
知DE:AC=1:3,则AC=3DE,
BN:BM=1:3,则BM:MN=3:2,
BM=3/2*MN,
S△DEF=1/2*DE*MN=2√2,
则S△ABC=1/2*AC*BM=1/2*3DE*3/2*MN
=9/2*1/2*DE*MN
=9/2*S△DEF
=9/2*2√2=9√2.
作BM⊥AC于M,交DE于N,
由DE‖AC,AD:DB=2:1,
知DE:AC=1:3,则AC=3DE,
BN:BM=1:3,则BM:MN=3:2,
BM=3/2*MN,
S△DEF=1/2*DE*MN=2√2,
则S△ABC=1/2*AC*BM=1/2*3DE*3/2*MN
=9/2*1/2*DE*MN
=9/2*S△DEF
=9/2*2√2=9√2.