NO1.因为SinA-SinC=SinB
所以sinc=sina-sinb
那么(sinc)^2=(sina-sinb)^2=(sina)^2-2sina*sinb+(sinb)^2,
CosA+CosC=CoSB,
cosc=cosb-cosa
同理(cosc)^2=(cosb)^2-2cosa*cosb+(cosa)^2,
所以相加得1=1-2(cosa*cosb+sina*sinb)+1,
公式cos(a-b)=cosa*cosb+sina*sinb
∴所以相加得1=1-2cos(a-b)+1,
2cos(a-b)=1
所以cos(a-b)=1/2.
因为A,B,C∈(0,π/2),
所以0