2sin^2α+sinαcosα-3cos^2α
=(2sin^2α+sinαcosα-3cos^2α)/(cos^2α+sin^2α)
上下同除cos^2α
=(2tan^2α+tanα-3)/(1+tan^2α)
=7/5
→5(2sin²α+sinαcosα-3cos²α)=7(sin²α+cos²α)
→3sin²α+5sinαcosα-22cos²α=0
→3tan²α+5tanα-22=0
→(3tanα+11)(tanα-2)=0
∴tanα=-11/3或tanα=2.
2sin^2α+sinαcosα-3cos^2α
=(2sin^2α+sinαcosα-3cos^2α)/(cos^2α+sin^2α)
上下同除cos^2α
=(2tan^2α+tanα-3)/(1+tan^2α)
=7/5
→5(2sin²α+sinαcosα-3cos²α)=7(sin²α+cos²α)
→3sin²α+5sinαcosα-22cos²α=0
→3tan²α+5tanα-22=0
→(3tanα+11)(tanα-2)=0
∴tanα=-11/3或tanα=2.