f(x+1)=-f(x)
f(x)=-f(x-1),
所以f(x+1)=f(x-1),
即f(x)周期为2,
f﹙-5﹚=f(1),
f﹙5/2﹚=f(1/2),
因为当x∈[0,1]时单调递增,
所以f(1)>f(1/2)>f(1/3)
即 f(-5)>f(5/2)>f(1/3).
f(x+1)=-f(x)
f(x)=-f(x-1),
所以f(x+1)=f(x-1),
即f(x)周期为2,
f﹙-5﹚=f(1),
f﹙5/2﹚=f(1/2),
因为当x∈[0,1]时单调递增,
所以f(1)>f(1/2)>f(1/3)
即 f(-5)>f(5/2)>f(1/3).