a(n+1)=an+c
a(n+1)-an=c,为定值,又a1=1,数列{an}是以1为首项,c为公差的等差数列
a1、a2、a5成等比数列,则
a2²=a1·a5
(a1+c)²=a1(a1+4c)
c²-2a1c=0
a1=1代入,得c(c-2)=0
若c=0,则a1=a2=a5,公比为1,与已知矛盾,舍去
c=2
an=a1+c(n-1)=1+2(n-1)=2n-1
bn=1/[ana(n+1)]=1/[(2n-1)(2(n+1)-1)]=(1/2)[1/(2n-1)-1/(2(n+1)-1)]
Sn=b1+b2+...+bn
=(1/2)[1/(2×1-1)-1/(2×2-1)+1/(2×2-1)-1/(2×3-1)+...+1/(2n-1)-1/(2(n+1)-1)]
=(1/2)[1- 1/(2n+1)]
=n/(2n+1)