1.观察法
用于简单的解析式.
y=1-√x≤1,值域(-∞,1]
y=(1+x)/(1-x)=2/(1-x)-1≠-1,值域(-∞,-1)∪(-1,+∞).
2.配方法
多用于二次(型)函数.
y=x^2-4x+3=(x-2)^2-1≥-1,值域[-1,+∞)
y=e^2x-4e^x-3=(e^x-2)^2-7≥-7,值域[-7,+∞)
3.换元法
多用于复合型函数.
通过换元,使高次函数低次化,分式函数整式化,无理函数有理化,超越函数代数以方便求值域.
特别注意中间变量(新量)的变化范围.
4.不等式法
用不等式的基本性质,也是求值域的常用方法.
y=(e^x+1)/(e^x-1),(0