1/(m^2-m)+(m-5)/(2m^2-2)
=1/[m(m-1)]+(m-5)/[2(m+1)(m-1)]
=2(m+1)/[2m(m+1)(m-1)]+m(m-5)/[2m(m+1)(m-1)]
=[2(m+1)+m(m-5)]/[2m(m+1)(m-1)]
=(m²-3m+2)/[2m(m+1)(m-1)]
=(m-1)(m-2)/[2m(m+1)(m-1)]
=(m-2)/[2m(m+1)]
1/(m^2-m)+(m-5)/(2m^2-2)
=1/[m(m-1)]+(m-5)/[2(m+1)(m-1)]
=2(m+1)/[2m(m+1)(m-1)]+m(m-5)/[2m(m+1)(m-1)]
=[2(m+1)+m(m-5)]/[2m(m+1)(m-1)]
=(m²-3m+2)/[2m(m+1)(m-1)]
=(m-1)(m-2)/[2m(m+1)(m-1)]
=(m-2)/[2m(m+1)]