a⊥b x1x2+y1y2=0
即 (sinx-cosx)(sinx+cosx) + 2cosxsinx = 0
sin^2 (x) - cos^2 (x) + 2cosxsinx = 0
-cos(2x) + sin(2x) = 0
cos(2x) = sin(2x)
tan(2x) = sin(2x)/cos(2x) = 1
a*b = x1x2 + y1y2 = 3/5
即 (sinx-cosx)(sinx+cosx) + 2cosxsinx = 3/5
sin(2x) - cos(2x) = 3/5
[sin(2x) - cos(2x) ]^2 = 9/25
sin^2(2x) + cos^2(2x) - 2sin(2x)cos(2x) = 9/25
1 - sin(4x) = 9/25
sin(4x) = 16/25