an=Sn-S(n-1)
Sn=3/2n^2+7/2n
S(n-1)=3/2(n-1)^2+7/2(n-1)
Sn-S(n-1)=3/2n^2+7/2n-[3/2(n-1)^2+7/2(n-1)]
=3n-3/2+7/2
=3n+2
Bn=2^(3n+2)
B(n-1)=2^(3n+2-3)=2^(3n+2)*1/8
q=1/8
B1=2^5
Bn=32*(1/8)^(n-1)
前n项和Ta= 32*(1-1/8^n)/(1-1/8)=28(1-1/8^n)
an=Sn-S(n-1)
Sn=3/2n^2+7/2n
S(n-1)=3/2(n-1)^2+7/2(n-1)
Sn-S(n-1)=3/2n^2+7/2n-[3/2(n-1)^2+7/2(n-1)]
=3n-3/2+7/2
=3n+2
Bn=2^(3n+2)
B(n-1)=2^(3n+2-3)=2^(3n+2)*1/8
q=1/8
B1=2^5
Bn=32*(1/8)^(n-1)
前n项和Ta= 32*(1-1/8^n)/(1-1/8)=28(1-1/8^n)