小龙训练上楼梯,他每步可上1阶或2阶或3阶,但不能连续4步都上3阶,而且不能踏到第12阶,那么小龙上到第14阶的不同上法

1个回答

  • 解题思路:如果用n表示台阶的级数,an表示某人走到第n级台阶时,所有可能不同的走法,求出当n=1,2,3,4时不同的走法,找出规律即可求解.

    如果用n表示台阶的级数,an表示某人走到第n级台阶时,所有可能不同的走法,容易得到:

    ①当n=1时,显然只要1种跨法,即a1=1.

    ②当n=2时,可以一步一级跨,也可以一步跨二级上楼,因此,共有2种不同的跨法,即a2=2.

    ③当n=3时,可以一步一级跨,也可以一步三级跨,还可以第一步跨一级,第二步跨二级或第一步跨二级,第二步跨一级上楼,因此,共有4种不同的跨法,即a3=4.

    ④当n=4时,分三种情况分别讨论:

    如果第一步跨一级台阶,那么还剩下三级台阶,由③可知有a3=4(种)跨法.

    如果第一步跨二级台阶,那么还剩下二级台阶,由②可知有a2=2(种)跨法.

    如果第一步跨三级台阶,那么还剩下一级台阶,由①可知有a1=1(种)跨法.

    根据加法原理,有a4=a1+a2+a3=1+2+4=7.

    类推,有a5=a2+a3+a4=2+4+7=13;

    a6=a3+a4+a5=4+7+13=24;

    a7=a4+a5+a6=44;

    a8=a5+a6+a7=81;

    a9=a6+a7+a8=149;

    a10=a7+a8+a9=274;

    a11=a8+a9+a10=504;

    a12=0;

    a13=a10+a11=778;

    a14=a11+a13=1282;

    故答案为:1282.

    点评:

    本题考点: 计数方法.

    考点点评: 本题考查了计数的方法:排列与组合问题,分别根据排列与组合原理求出当n=1,2,3,4…时不同的走法,找出规律,是解答此题的关键.