(1)证明:∵△ABC和△DCE均是等边三角形,
∴AC=BC,CE=CD,∠ACB=∠DCE=60°,
∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,
在△ACE和△BCD中
,
∴△ACE≌△BCD;
(2)证明:过C作CM⊥AE于M,CN⊥BD于N,
∵CM⊥AE,CN⊥BD,
∴∠DNC=∠EMC=90°,
∵△ACE≌△BCD,
∴∠CDB=∠AEC,
在△DNC和△EMC中
,
∴△DNC≌△EMC,
∴CN=CM,
CM⊥AE,CN⊥BD,
∴∠BOC=∠EOC.