解题思路:过D作DG∥AC,交BC的延长线于点G,根据等腰梯形的性质可求得BE的长,根据平行四边形的性质及等腰三角形的性质可得到四边形ACGD是平行四边形,△BDG,△DFG分别是等腰直角三角形,再根据周长公式即可求得四边形AEFD的周长.
根据题意,先作如图所示的辅助线,
由四边形ABCD是等腰梯形,可得AC=BD,且AD=EF=a,BE=FC=[1/2(b−a)=
b−a
2];
作DG∥AC,交BC的延长线于G.
∵AD∥BC,AC∥DG
∴四边形ACGD是平行四边形
∴AD=CG=a,DG=AC=BD
∵BD⊥AC,AC∥DG
∴BD⊥DG
在△BDG中,BD⊥DG,BD=DG
∴△BDG是等腰直角三角形
∴∠G=45°
在△DFG中,∠G=45°,∠DFG=90°
∴△DFG是等腰直角三角形
∴DF=FG=FC+CG=[b−a/2]+a
由题意易得四边形AEFD是矩形,故其周长为2(AD+DF)=2(a+[b−a/2]+a)=3a+b.
故选A.
点评:
本题考点: 等腰梯形的性质.
考点点评: 本题以等腰梯形为载体,综合考查了等腰直角三角形、平行四边形、矩形的性质和判定以及等腰梯形的性质和最基本辅助线作法,知识联系强.