1.化简f(a)={[sin(π-α)cos(2π-α)cot(3π+α)]/[cot(-π-α)sin(-π-α)]}

1个回答

  • 1.化简f(a)={[sin(π-α)cos(2π-α)cot(3π+α)]/[cot(-π-α)sin(-π-α)]}得:f(a)得值是多少?(过程要详细 注意括号)

    解答如下:

    f(a)={[sin(π-α)cos(2π-α)cot(3π+α)]/[cot(-π-α)sin(-π-α)]}

    ={[sinαcosacot(2π+π+α)]/[cot(2π-π-α)sin(2π-π-α)]}

    ={[sinαcosacot(π+α)]/[cot(π-α)sin(π-α)]}

    ={-[sinαcosacot(α)]/-[cot(α)sinα]}

    ={[sinαcosacot(α)]/[cot(α)sinα]}

    =cosa

    2.已知f(x)=αsin2x+βtanx+1,且f(-2)=-2007,那么f(π-2)的值是多少?(详细过程)

    解答如下:

    f(-2)=αsin2(-2)+βtan(-2)+1

    =-αsin4-βtan(2)+1

    f(π-2)=αsin2(π-2)+βtan(π-2)+1

    =αsin(2π-4)+βtan(π-2)+1

    =-αsin4-βtan(2)+1=-2007;

    3.求cos(π/5)+cos(2π/5)+cos(3π/5)+cos(4π/5)的值.(过程越详细越好)

    解答如下:

    原式=cos(π/5)+cos(3π/5)+cos(2π/5)+cos(4π/5)

    =2cos(2π/5)sin(-π/5)+2cos(3π/5)sin(-π/5)

    =-2sin(π/5)*[cos(2π/5)+cos(3π/5)]

    =-2sin(π/5)*2cos(π/2)sin(-π/10)

    =0