令根号x=t
x=t²,dx=2tdt
x=0,t=0;x=1,t=1
所以
原式=∫(0,1)1/(2+t) *2tdt
=2∫(0,1)t/(2+t)dt
=2∫(0,1)(t+2-2)/(2+t)dt
=2∫(0,1)(1-2/(t+2))dt
=(2t-4ln|t+2|)|(0,1)
=2-4ln3-(0-4ln2)
=2-4ln(3/2)
令根号x=t
x=t²,dx=2tdt
x=0,t=0;x=1,t=1
所以
原式=∫(0,1)1/(2+t) *2tdt
=2∫(0,1)t/(2+t)dt
=2∫(0,1)(t+2-2)/(2+t)dt
=2∫(0,1)(1-2/(t+2))dt
=(2t-4ln|t+2|)|(0,1)
=2-4ln3-(0-4ln2)
=2-4ln(3/2)