一次函数,二次函数,反比例函数,正比例函数,指数函数,对数函数的定义域和值域

2个回答

  • 一次函数

    一、定义与定义式:

    自变量x和因变量y有如下关系:

    y=kx+b

    则此时称y是x的一次函数.

    特别地,当b=0时,y是x的正比例函数.

    即:y=kx (k为常数,k≠0)

    二、一次函数的性质:

    1.y的变化值与对应的x的变化值成正比例,比值为k

    即:y=kx+b (k为任意不为零的实数 b取任何实数)

    2.当x=0时,b为函数在y轴上的截距.

    三、一次函数的图像及性质:

    1.作法与图形:通过如下3个步骤

    (1)列表;

    (2)描点;

    (3)连线,可以作出一次函数的图像——一条直线.因此,作一次函数的图像只需知道2点,并连成直线即可.(通常找函数图像与x轴和y轴的交点)

    2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b.(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点.

    3.k,b与函数图像所在象限:

    当k>0时,直线必通过一、三象限,y随x的增大而增大;

    当k<0时,直线必通过二、四象限,y随x的增大而减小.

    当b>0时,直线必通过一、二象限;

    当b=0时,直线通过原点

    当b<0时,直线必通过三、四象限.

    特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像.

    这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限.

    四、确定一次函数的表达式:

    已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式.

    (1)设一次函数的表达式(也叫解析式)为y=kx+b.

    (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b.所以可以列出2个方程:y1=kx1+b …… ① 和 y2=kx2+b …… ②

    (3)解这个二元一次方程,得到k,b的值.

    (4)最后得到一次函数的表达式.

    五、一次函数在生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数.s=vt.

    2.当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数.设水池中原有水量S.g=S-ft.

    六、常用公式:(不全,希望有人补充)

    1.求函数图像的k值:(y1-y2)/(x1-x2)

    2.求与x轴平行线段的中点:|x1-x2|/2

    3.求与y轴平行线段的中点:|y1-y2|/2

    4.求任意线段的长:√(x1-x2)^2+(y1-y2)^2 (注:根号下(x1-x2)与(y1-y2)的平方和)

    二次函数

    I.定义与定义表达式

    一般地,自变量x和因变量y之间存在如下关系:

    y=ax^2+bx+c

    (a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a0时,y=a(x-h)^2的图象可由抛物线y=ax^2向右平行移动h个单位得到,

    当h0,k>0时,将抛物线y=ax^2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)^2 +k的图象;

    当h>0,k