设F(x)=f(x)-g(x),有F(a)<0,F(b)>0,即F(a)×F(b)<0,由零值定理,至少存在一个x'∈(a,b),使得F(x')=0,即f(x')=g(x').
f(x)和g(x)的图像在[a,b]上是连续不断的,且f(a)g(b),试证明:在(a,b)内至少存在一点x' ,使f(
1个回答
相关问题
-
函数零点...设函数f(x)和g(x)的图像在[a,b]上是连续不断的,且f(a)g(b),试说明:在(a,b)内至少存
-
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明至少存在一点ξ∈(a,b).
-
设f(x)在[a,b]上连续,且a<f(x)<b,证明:在(a,b)内至少存在一点c,使f(c)=c
-
设函数f(x)和g(x)在区间[a,b]上连续,且g(x)≠0,x∈[a,b],证明:至少存在一点ξ∈(a,b),使得:
-
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g″(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试
-
设f(x) g(x)在[a,b]连续, 证至少存在一点ξ∈(a,b), 使f(ξ)∫[b,ξ] g(x)dx=g(ξ)∫
-
设函数f(x),g(x)在[a,b]上内二阶可导且存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:
-
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,g(x)
-
设f(x)在[a,b]上连续,证明:至少存在一点ε∈[a,b],使f(ε)=[f(a)+f(b)]/2
-
高数题.若f(x)在【a,b】上有二阶导f''(x),且f'(a)=f'(b)=0,证明在(a,b)内至少存在一点c,满