原式=[1-1/(x-1)]÷[(x²-4x+4)/(x²-1)]
=[(x-1)/(x-1)-1/(x-1)]×[(x²-1)/(x²-4x+4)]
=[(x-1-1)/(x-1)]×[(x+1)(x-1)/(x-2)²]
=[(x-2)/(x-1)]×[(x+1)(x-1)/(x-2)²]
=(x+1)/(x-2)
当x=0时
原式=(0+1)/(0-2)
=1/(-2)
= -1/2
=-2
原式=[1-1/(x-1)]÷[(x²-4x+4)/(x²-1)]
=[(x-1)/(x-1)-1/(x-1)]×[(x²-1)/(x²-4x+4)]
=[(x-1-1)/(x-1)]×[(x+1)(x-1)/(x-2)²]
=[(x-2)/(x-1)]×[(x+1)(x-1)/(x-2)²]
=(x+1)/(x-2)
当x=0时
原式=(0+1)/(0-2)
=1/(-2)
= -1/2
=-2