如图,已知三角形ABC中,角BAC、角ABC的平分线交于O,AO交BC于D,BO交AC于E,连OC,过O作OF垂直于BC于F,(1)试判断角AOB与角COF有何数量关系∵∠BAC、∠ABC的平分线交于O
∴OC平方∠ACB
那么∠BCO=∠FCO=1/2∠ACB
∵∠AOB=180°-(∠BAO+∠ABO)
=180°-1/2(∠BAC+∠ABC)
=180°-1/2[180°-∠ACB]
=90°+1/2∠ACB
OF⊥BC,那么RT△COF中:∠COF=90°-∠FCO=90°-1/2∠ACB
∴∠AOB+∠COF=90°+1/2∠ACB+90°-1/2∠ACB=180°