在数列an中,a1=1/2 an+1=3an/an+3 求a2 a3 a4 a5?

3个回答

  • a(n+1)=3an/(an+3)

    a2=(3*1/2)/(1/2+3)=(3/2)/(7/2)=3/7

    a3=(3*3/7)/(3/7+3)=(9/7)/(24/7)=9/24=3/8

    a4=(3*3/8)/(3/8+3)=(9/8)/(27/8)=9/27=3/9

    .

    an=3/(n+5)

    证明:(1)当n=1时,a1=3/6=1/2, 命题成立

    (2)设n=k时,ak=3/(k+5)成立.

    则n=k+1时有

    a(k+1)=3ak/(ak+3)={9/[k+5]}/3[1/(k+5)+1]=[3/(k+5)]/[(k+6)/(k+5)]=3/(k+6)=3/[(k+1)+5]

    所以a(k+1)=3/[(k+1)+5]

    对于n∈N+都成立.