既然是奇函数,则f(0)=0,即:
n/1=0,得:n=0
又:f(x)=(mx)/(x²+1),则:f(1/2)=2/5,得:m=1
所以,f(x)=x/(x²+1)=1/[(x)+(1/x)],则f(x)在(-1,1)上的值域是[-2,2]
对任意x1、x2∈[-1,1],|f(x1)-f(x2)|的最大值是4,则:
2^(t-1)≥4
2^(t-1)≥2²
t-1≥2
t≥3
t的最小值是3
既然是奇函数,则f(0)=0,即:
n/1=0,得:n=0
又:f(x)=(mx)/(x²+1),则:f(1/2)=2/5,得:m=1
所以,f(x)=x/(x²+1)=1/[(x)+(1/x)],则f(x)在(-1,1)上的值域是[-2,2]
对任意x1、x2∈[-1,1],|f(x1)-f(x2)|的最大值是4,则:
2^(t-1)≥4
2^(t-1)≥2²
t-1≥2
t≥3
t的最小值是3