设y=x-Inx,则此函数在区间(0,1)内为单调递减,为什么?我求完导数之后就不会了
3个回答
y=x-Inx
求导y′=[x-Inx]′
=1-1/x
当x属于(0,1)时
y′=1-1/x<0
又导数的性质知导数<0,函数递减
即y=x-Inx,则此函数在区间(0,1)内为单调递减
相关问题
函数y=1/2^2-Inx的单调递减区间
y=1/2x平方-Inx的单调递减区间为,
导数求函数的单调性不懂 某个区间 [ a ,b ] 内,如果导数 f ‘(x)>0,那么函数y=f(x)在这个区间内单调
函数f[x]=xinx[x>0]的单调递增区间是 求导出来是inx+1.然后我不会了
证明:函数y=1/x在区间(0,+无穷)上为单调递减函数
函数Y=二分之一方-Inx的单调递减区间为?
已知函数f(x)=x-inx,则f(x)的单调递减区间是
设函数f(x)=x²+(m-4)x+3的单调递减区间为(-∞,1)单调递增区间为(1,﹢∞),则m=
求一个函数的单调递减区间,求导之后f'(x)
函数y=x-lnx,x∈(0,+∞)的单调递减区间为______.