(1+根号2)分之1=根号2-1
(根号2+根号3)分之1=根号3-根号2
规律是:
1/[√n+√(n+1)]=√(n+1)-√n
计算 1/(1+√2)+1/(√2+√3)+...+1/(√2011+√2012)
=√2-1+√3-√2+...+√2012-√2011
=-1+√2012
=√2012-1
(1+根号2)分之1=根号2-1
(根号2+根号3)分之1=根号3-根号2
规律是:
1/[√n+√(n+1)]=√(n+1)-√n
计算 1/(1+√2)+1/(√2+√3)+...+1/(√2011+√2012)
=√2-1+√3-√2+...+√2012-√2011
=-1+√2012
=√2012-1