cos2A=2(cosA)^2-1
cos2B=2(cosB)^2-1
所以cos2A/a^2-cos2B/b^2-1/a^2+1/b^2
=[2(cosA)^2-1-1]/a^2-[2(cosB)^2-1-1]/b^2
=2[(cosA)^2-1]/a^2-2[(cosB)^2-1]/b^2
=-2(sinA)^/a^2+2(sinB)^2/b^2
因为sinA/a=sinB/b
所以(sinA)^/a^2=(sinB)^2/b^2
所以-2(sinA)^/a^2+2(sinB)^2/b^2=0
所以cos2A/a^2-cos2B/b^2-1/a^2+1/b^2=0
所以cos2A/a^2-cos2B/b^2=1/a^2-1/b^2