2×4×6×8+16=400=20^2 = (2×8+4)^2
4×6×8×10+16=1936=44^2 = (4×10+4)^2
6×8×10×12+16=5776=76^2 = (6×12+4)^2
所以
n×(n+2)×(n+4)×(n+6) + 16 = (n×(n+6) + 4)^2
证明:
n×(n+2)×(n+4)×(n+6) + 16
= (n^2 + 2n)(n^2 + 10n + 24) + 16
= n^4 + 2n^3 + 10n^3 + 20n^2 + 24n^2 + 48n + 16
= n^4 + 12n^3 + 44n^2 + 48n + 16
= (n^2 + 6n + 4)^2
= (n × (n+6) + 4)^2