f(x)=5(cosx)^2+(sinx)^2-4√3sinxcosx

1个回答

  • f(x)=5cos²x+sin²x-4√3sinxcosx

    =1+4cos²x-2√3sin(2x)

    =1+2+2cos(2x)-2√3sin(2x)

    =3-4[√3sin(2x)/2-cos(2x)/2]

    =3-4[sin(2x)cos(π/6)-cos(2x)cos(π/6)]

    =3-4sin(2x-π/6)

    =3-4sin[2(x-π/12)]

    T=2π/2=π

    f(x)的最小正周期是π

    2x-π/6=2kπ+π/2,即x=kπ+π/3,在[-π/6,π/4]上无解

    2x-π/6=2kπ-π/2,即x=kπ-π/6,得x=-π/6

    f(π/4)=3-2√3

    f(-π/6)=7

    f(x)在[-π/6,π/4]上的值域是[3-2√3,7]

    或者这样

    f(x)=5cos²x+sin²x-4√3sinxcosx的图象即由f(x)=-sinx的图象的横坐标缩小1倍,纵坐标扩大3倍,向右平移π/12个单位,向上平移3个单位得到

    f(x)=-sin(2x)在[-π/4,π/4]单调递减

    f(x)=-sin[2(x-π/12)]在[-π/6,π/3]上单调递减,即在[-π/6,π/4]上单调递减

    f(π/4)=3-2√3

    f(-π/6)=7

    f(x)在[-π/6,π/4]上的值域是[3-2√3,7]