什么是麦克斯韦方程?

1个回答

  • 麦克斯韦方程组[1]是英国物理学家麦克斯韦在19世纪建立的描述电场与磁场的四个基本方程.

    方程组的微分形式,通常称为麦克斯韦方程.在麦克斯韦方程组中,电场和磁场已经成为一个不可分割的整体.该方程组系统而完整地概括了电磁场的基本规律,并预言了电磁波的存在.

    麦克斯韦提出的涡旋电场和位移电流假说的核心思想是:变化的磁场可以激发涡旋电场,变化的电场可以激发涡旋磁场;电场和磁场不是彼此孤立的,它们相互联系、相互激发组成一个统一的电磁场.麦克斯韦进一步将电场和磁场的所有规律综合起来,建立了完整的电磁场理论体系.这个电磁场理论体系的核心就是麦克斯韦方程组.

    麦克斯韦方程组在电磁学中的地位,如同牛顿运动定律在力学中的地位一样.以麦克斯韦方程组为核心的电磁理论,是经典物理学最引以自豪的成就之一.它所揭示出的电磁相互作用的完美统一,为物理学家树立了这样一种信念:物质的各种相互作用在更高层次上应该是统一的.另外,这个理论被广泛地应用到技术领域.

    麦克斯韦方程组的积分形式:麦克斯韦方程组的积分形式:(in matter)

    这是1873年前后,麦克斯韦提出的表述电磁场普遍规律的四个方程.

    其中:(1)描述了电场的性质.在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献.

    (2)描述了磁场的性质.磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献.

    (3)描述了变化的磁场激发电场的规律.

    (4)描述了变化的电场激发磁场的规律.