解题思路:(1)设{an}的公差为d,{bn}的公比为q,则d为正整数,an=3+(n-1)d,bn=qn-1,
依题意有
b
a
n+1
b
a
n
=
q
2+nd
q
2+(n−1)d
=qd=64,且S2b2=(6+d)q=64,由此可导出an与bn.
(2)Sn=3+5+…+(2n+1)=n(n+2),所以 [1
解题思路:(1)设{an}的公差为d,{bn}的公比为q,则d为正整数,an=3+(n-1)d,bn=qn-1,
依题意有
b
a
n+1
b
a
n
=
q
2+nd
q
2+(n−1)d
=qd=64,且S2b2=(6+d)q=64,由此可导出an与bn.
(2)Sn=3+5+…+(2n+1)=n(n+2),所以 [1