一道数列问题 设f(x)=x(x-1)(x-2)...(x-100),则f‘(x)等于?

3个回答

  • 呃,是一阶导数啊

    把后面的(x-1)(x-2)...(x-100)看成一个整体

    f(x)=x(x-1)(x-2)...(x-100)

    f'(x)=x ' *[(x-1)(x-2)...(x-100)]+x[(x-1)(x-2)...(x-100)]‘

    =(x-1)(x-2)...(x-100)+x[(x-1)(x-2)...(x-100)]‘

    同样的把(x-2)...(x-100)再次看成一个整体求导

    一步一步的类推

    f'(x)=(1/x+1/(x-1)+1/(x-2)+.+1/(x-100))x[(x-1)(x-2)...(x-100)]

    用隐函数求导的话可以用

    对数(很常用的)

    y=f(x)=x(x-1)(x-2)……(x-100)

    lny=lnx+ln(x-1)+ln(x-2)+……+1n(x-99)+ln(x-100)

    y'/y=(1/x+1/(x-1)+1/(x-2)+.+1/(x-100)

    y'=(1/x+1/(x-1)+1/(x-2)+.+1/(x-100))x[(x-1)(x-2)...(x-100)]